Augmented natriuretic peptide-induced guanylyl cyclase activity and vasodilation in experimental hyperglycemic rats.
نویسندگان
چکیده
The present study was aimed to investigate whether hyperglycemia may alter the regulation of vascular natriuretic peptide receptors (NPR). The hyperglycemia was induced in rats by the treatment with streptozotocin (50 mg/kg, i.v.). The expression of different subtypes of NPR was determined in the thoracic aorta by reverse transcriptase-polymerase chain reaction and quantitative in vitro receptor autoradiography. The isometric tension and the guanylyl cyclase activity of the isolated thoracic aorta in response to natriuretic peptides were also determined. Following the treatment with streptozotocin, the plasma concentration of atrial natriuretic peptide (ANP) was significantly increased. The expression of NPR-A was increased, while that of NPR-C was reduced. The receptor binding study demonstrated an increased maximal binding capacity of NPR, with its affinity not significantly altered. The magnitude of vasodilation and guanylyl cyclase activity in response to ANP was significantly increased. On the other hand, the vasodilator response as well as the tissue formation of cGMP in response to acetylcholine or sodium nitroprusside was significantly reduced. These results indicate that the hyperglycemia may cause an altered regulation of vascular NPR.
منابع مشابه
Inhibitory effect of Ca(2+) on ATP-mediated stimulation of NPR-A-coupled guanylyl cyclase in renal glomeruli from spontaneously hypertensive and normotensive rats.
Atrial natriuretic peptide (ANP) regulates blood pressure mainly through the occupation of the guanylyl cyclase-coupled receptor NPR-A, which requires ATP interaction for maximal activation. This study investigates the effect of extracellular Ca(2+) on ATP-mediated regulation of NPR-A-coupled guanylyl cyclase activity in glomerular membranes from Wistar Kyoto (WKY) and spontaneously hypertensiv...
متن کاملSelective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.
Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncom...
متن کاملMolecular biology of natriuretic peptides and nitric oxide synthases.
Natriuretic peptides and nitric oxide play important roles in cardiovascular and renal physiology and disease. The natriuretic peptides - atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide - comprise a family of proteins that participate in the integrated control of intravascular volume and arterial blood pressure. The natriuretic peptides differentially bind ...
متن کاملNeuroendocrine control of body fluid homeostasis.
Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the...
متن کاملRenal hyporesponsiveness to atrial natriuretic peptide in congestive heart failure results from reduced atrial natriuretic peptide receptor concentrations.
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide decrease blood pressure and cardiac hypertrophy by activating natriuretic peptide receptor A (NPR-A), a transmembrane guanylyl cyclase also known as guanylyl cyclase A. Inactivation of NPR-A is a potential mechanism for the renal hyporesponsiveness observed in congestive heart failure (CHF) but direct data supporting this hypothesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Japanese journal of pharmacology
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2002